

Decarbonization Planning Meeting

Salas O'Brien Introduction

Decarbonization • Electrification • Energy Master Planning

October 25, 2024

Introductions

Essi Najafi

Managing Principal

Mike Walters, PE

Principal, District Energy Market Leader

Quick Salas O'Brien Stats

90+ OFFICES

3,800+TEAM MEMBERS

~50
YEARS IN BUSINESS

90%+ANNUAL RETENTION RATE

Local Everywhere, International Resources

Critical Markets That Impact Everyday Life & Improve the Human Experience

Healthcare

Data Centers & Telecom

Science & Technology

Food & Beverage

Pharmaceuticals

Industrial Manufacturing

Transportation

Education

K-12 Higher Education

Commercial

High-Rise
Mixed-Use
Multi-Family
Retail
Corporate
Tenant
Improvement
Hospitality

Government

Federal Military State & Local

Venue

Entertainment & Arts
Sports
Theme Parks

MEP Prime Term Contract Georgetown University

Decarbonization + Energy Planning

1. What to invest in 2. How to deliver it

BAU Development Data, Criteria, Vision

Evaluations of Options

Modeling and Scenario Testing

Recommendations & Implementation

Life-cycle Cost of Ownership

Strategic Plan

Campus Development

Greenhouse Gas Emissions

Fiscal Constraints

Loads and Asset Dispatch Modeling

Facility Thermal Profile

HOT WATER TEMPERATURE

Supply Side Measures - Variable Energy Cost vs. COP

Example Electrified Technologies vs. Fossil Fuel Baseline

The **Coefficient of Performance (COP)** is a measure of the efficiency of heating, cooling, or refrigeration systems. It represents the ratio of useful heating or cooling output to the amount of energy input required.

For heating systems: $COP = \frac{Heat\ Output\ (kW\ or\ BTU)}{Energy\ Input\ (kW\ or\ BTU\ equivalent)}$

For cooling systems: $COP = \frac{Cooling Output (kW or BTU)}{Energy Input (kW or BTU equivalent)}$

CO2 Heat Pump

- Heat source: Air or Water
- Heat transfer: Air, water or combined
 - Air: Best efficiency
 - Lower compressor energy
 - No pumping energy

Lower installation cost

- No pumping station
- Smaller diameter piping compared to water (3 to 1 ratio)

Water: Packaged units

- No pressure piping outside of the unit
- No refrigerant outside of the unit
- Operating modes: Heating; cooling or simultaneous

CO2 Heat Pump

- Heat source: Air or Water
- Heat transfer: Air, water or combined
 - Air: Best efficiency
 - Lower compressor energy
 - No pumping energy

Lower installation cost

- No pumping station
- Smaller diameter piping compared to water (3 to 1 ratio)

Water: Packaged units

- No pressure piping outside of the unit
- No refrigerant outside of the unit
- Operating modes: Heating; cooling or simultaneous

Air source CO₂ Refrigerant Heat Pump

- 80°-100° kW heating capacity
- \checkmark 149°-194° F hot water supply
- Warm-up from start to 149° F in less than
 30 seconds
- ✓ VFD for compressor and evaporator fans to maintain optimum performance
- Rugged outdoor cabinet
- Rapid defrost cycle for low temperature ambient conditions

CO2 Heat Pump Unit Project Performance – Domestic Water Application

- 74kW (252,500 btu/hr) heating capacity
- 75 Finlet water / 194 Foutlet water (130 F to use)
- ✓ 51 kW (14.5 TR) cooling capacity
- ▲ 44 F chilled water outlet / 54 F chilled water inlet
- 24.9 kW power consumption (460/3/60)

194 F hot water outlet condition:

- Unit heating COP: 2.95
- ✓ Unit cooling COP: 2.04
- Unit combined COP: 4.99

149 F hot water outlet condition:

- Unit heating COP: 3.47
- ✓ Unit cooling COP: 2.55
- Unit combined COP: 6.02

Round verses oval heating/cooling coils

Description	Round Tube Coil	Oval Tube Coil
Tube Diameter (in.)	0.625	0.500 (base stock)
FH x FL x Depth	55.5 in. x 84 in. x 6.0 in.	55 in. x 84 in. x 4.33 in.
Number of Coils per Bank	4	4
Fin Type	Waffle	Oval Raised Lance
Fins per Inch	11.5	10
Number of Feeds	19	44
CFM	76000 ACFM	
Entering Air Temps (DB/WB)	120°F/67°F	
Gallons per Minute	284 GPM	
Entering Water Temp	63°F	
Capacity	3,083,000 Btu/hr	3,073,000 Btu/hr
Water Pressure Drop	5.4 Psi	5.4 Psi
Air-side Pressure Drop	0.47 in. H₂O	0.285 in. H ₂ 0

40% less fan energy, with the same heat transfer!

Life Cycle Cost Comparison

MTCO₂e = Metric Tons of Carbon Dioxide Equivalent DEMP = District Energy Master Plan AEC = Alternative Energy Certificates GHG = Greenhouse Gas Emissions

Ball State Geothermal Conversion

CLIENT

Ball State University

Geothermal conversion

SERVICES

LOCATION

Muncie, IN

YEAR

2017

Electrified with heat pumps, steam to low temperature hot water

- The University has cut its carbon footprint in half and realized over \$2M in annual energy savings
- This system provides heating and cooling for 47 campus buildings comprising of 5.6M square feet

Programmatic Progress to Neutrality

Decarbonization in an historic setting

CLIENT

Smith College

LOCATION

Northampton, MA

SERVICES

Master plan, geothermal

YEAR

Master Plan 2019

Implementation in progress

- Campus energy master plan for achieving carbon neutrality by 2030
- Steam to low-temperature hot water conversion, supported by a 500 bore geothermal vertical heat exchanger
- Conversion of 90 historical buildings

Merging Sustainability with Historical Preservation in School Renovation

CLIENT

DC Department of General Services

LOCATION

Washington, DC

SERVICES

Mechanical, Electrical, Plumbing

YEAR

2023

- Modernization of 85,000 SF Historic Raymond Elementary School
- Over 100 geothermal wells, solar canopies, and energy-efficient systems integrated
- Targeting LEED Gold and Net Zero Energy certifications

Questions?