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Critical Markets That Impact Everyday Life &
Improve the Human Experience
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Decarbonization + Energy Planning
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1 What to invest in 2. How to deliver it
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Loads and Asset Dispatch Modeling
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Facility Thermal Profile
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Thermal Profile. Developing an accurate thermal profile of the facility is one
of the most important steps in geothermal design and decarbonization
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Technology Integration
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COST FOR A BUILDING CONVERSION

EXISTING HEAT TRANSFER EQUIPMENT : EXISTING HEAT TRANSFER EQUIPMENT
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Supply Side Measures - Variable Energy Cost vs. COP

Example Electrified Technologies vs. Fossil Fuel Baseline
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The Coefficient of Performance (COP) is a measure of the efficiency of heating, cooling, or or heating systems: ~— Energy Input (kW or BTU equivalent)

refrigeration systems. It represents the ratio of useful heating or cooling output to the amount

of energy input required.

Cooling Output (kW or BTU)

For cooling systems: COP =

Energy Input (kW or BTU equivalent)



ASHP COP
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CO2 Heat Pump

4 Heat source: Air or Water

4 Heat transfer: Air, water or combined

Alir: Best efficiency
Lower compressor energy

*  No pumping energy
Lower installation cost
*  No pumping station

*  Smaller diameter piping compared to water (3 to 1 ratio)

Water: Packaged units
*  No pressure piping outside of the unit
«  No refrigerant outside of the unit

4 QOperating modes: Heating; cooling or simultaneous
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Air source CO, Refrigerant Heat Pump

14-110°F
Ambient air
heat source

18-32 kW power
input

4

809-100° kW heating capacity
1499-194° F hot water supply

Warm-up from start to 149° F in less than
30 seconds

VFD for compressor and evaporator fans to
maintain optimum performance

Rugged outdoor cabinet

Rapid defrost cycle for low temperature
ambient conditions



CO2 Heat Pump Unit Project Performance
— Domestic Water Application

4 74kW (252,500 btu/hr) heating capacity

4 75Finlet water /194 F outlet water (130 F to use)
4 51kW (14.5TR) cooling capacity

4 44 F chilled water outlet / 54 F chilled water inlet
4 249 kW power consumption (460/3/60)

194 F hot water outlet condition: 149 F hot water outlet condition:
4  Unit heating COP: 2.95 4  Unit heating COP: 3.47
4  Unit cooling COP: 2.04 4 Unit cooling COP: 2.55

4  Unit combined COP: 4.99 4  Unit combined COP: 6.02



Round verses oval heating/cooling coils

Description Round Tube Coil Oval Tube Coil
Tube Diameter (in.) 0625 0.500 (base stock)
FH x FL x Depth 555in. x84 in. x6.01n. 55in. x 84in.x4.33 in.
Mumber of Coils per Bank 4 4
Fin Type Waffle (val Raised Lance
Fins per Inch 15 10
Number of Feeds 19 M
CFM 76000 ACFM
Entering Air Temps (DB/WB) 120°F/67°F
Gallons per Minute 284 GPM
Entering Water Temp 63°F
Capacity 3,083,000 Btu/hr 3,073,000 Bu/hr
Water Pressure Drop 5.4Psi 5.4 Psi

Air-side Pressure Drop

0.47 in. H,0

0.285in. H,0

40% less fan energy, with the same heat
transfer!



Net Present Cost (SMillions)

Life Cycle Cost Comparison

J00M
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18,047
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$208 M

11,543
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South Energy Center East Energy Center

$191 M

i | 2,857
| MTCO2e

$196 M

1,543
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East Energy Center w/

Athletic Field GHX

. Cost of Offsets

. Renewable Electricity

. Carbon Tax

. Operations & Maintenance

. Commodities

. Capital Expenditures
2030 Scope 1 & 2 GHG

ﬁ Emissions

MTCO,e = Metric Tons of Carbon Dioxide Equivalent
DEMP = District Energy Master Plan

AEC = Alternative Energy Certificates

GHG = Greenhouse Gas Emissions
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Ball State Geothermal Conversion

0 N \- CLIENT SERVICES
: ‘ Ball State University Geothermal
conversion
LOCATION YEAR
Electrical Distribution i Muncie, IN 2017
== Hot Water Distribution
== Chilled Water Distribution I )
Borefields i
Q District Energy Stations
4 Electrified with heat pumps, steam to
e
low temperature hot water

1 R 4 The University has cut its carbon
7“ footprint in half and realized over S2M in
annual energy savings

| 4 This system provides heating and cooling
for 47 campus buildings comprising of
5.6M square feet



Programm atic Progress to Neutrallty
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Miami University Master Planning —
'
Project 1: i \.\‘\‘
Western Campus \’\._.\Aoo.g

Geothermal Infrastructure “\o_,..._.
Phase1&2 Project 2: Project 3: 879 & .. 756
North Chiller Plant South Quad Hot "O.
and East Quad Water Conversion o— 1 —T—T—T— T —
Infrastructure & g ¥ 2 ¢ ¥ © @ 9o o % g
Renovations T & &8 &8 & 8 8 8 8 8 8
Drastic Energy Use Intensity Reduction (KBTU/SF/YR)

Resulted in a 56% reduction in carbon emissions

@ O @ @
Project 5: Project 7:
Expand Western Steam Plant
16M 80 Geothermal to Conversion to
1AM all Western Heating Hot
0 Buildings Water
12M 60 ,
10M 50 S
$ E
8M 40 E
6M 30 i ;
3 Project 4: Project 6:
I Actual Utility Costs am 20 Central Quad North Chiller Plant
I Budgeted Utility Costs o\ 10 HHW Conversion Conversion
0 00 to Geothermal

Consistent Improvement in Annual Utility Costs
Ongoing project implementation over the last
15 years, across 8M GSF



Decarbonization in an historic setting
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CLIENT SERVICES

Smith College Master plan,
geothermal

LOCATION YEAR

Northampton, MA Master Plan 2019

Implementation
in progress

4 Campus energy master plan for
achieving carbon neutrality by 2030

4 Steam to low-temperature hot water
conversion, supported by a 500 bore
geothermal vertical heat exchanger

4 Conversion of 90 historical buildings



Merging Sustainability with Historical
Preservation in School Renovation

CLIENT SERVICES

DC Department of Mechanical,

General Services Electripal,

LOCATION Plumbing

Washington, DC YEAR
2023

4 Modernization of 85,000 SF Historic
Raymond Elementary School

4 Qver 100 geothermal wells, solar
canopies, and energy-efficient
systems integrated

e e R

I EL D

4 Targeting LEED Gold and Net Zero
Energy certifications




Questions?

Solar Array

;
Thermal
Energy Storage

Central Energy Plant

Historic Steam Plant

Water Source
Loop Field

Geosource Borefield
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